視頻轉(zhuǎn)換器
HD FURY PRO是一款為:老式LCD-TV,CRT,三槍投影機,DLP\LCD投影機,以及沒有HDMI接口的各種顯示設(shè)備,HD FURY PRO將為這些設(shè)備提供***無損的HDMI信號轉(zhuǎn)換,以致完成數(shù)字向模擬信號的0損失橋接。
產(chǎn)品介紹
輸入接口:HDMI1、HDMI2
輸出接口:VGA(RGBHV)、YPBPR(色差分量)
輸入模式:480I/P、576I/P、720P、1080I/P
輸出模式:
YPBPR:480I/P、576I/P、720P、1080I
VGA:VGA、XGA、SVGA、SXGA、UGA(最高可以支持到1920X1080對應(yīng)分辨率)
音頻接口:L/R立體聲輸出、SPDIF數(shù)字光纖輸出
操作指南
輸入波動開關(guān):H1、H2
當(dāng)撥動開關(guān)對準(zhǔn)H1時,表示當(dāng)前輸入模式為HDMI1通道,將HDMI線材插入HDMI1端口,就可以享受***視頻輸出了;同理,將開關(guān)對準(zhǔn)H2時,表示當(dāng)前輸入通道為HDMI2,請將需要的HDMI線插在HDMI2接口上。
輸出撥動開關(guān):VGA、YUV(YPBPR)
當(dāng)波動開關(guān)對準(zhǔn)VGA時,表示當(dāng)前輸出為VGA通道;當(dāng)波動開關(guān)對準(zhǔn)YUV時,表示當(dāng)前輸出為YPBPR通道。
LED:藍(lán)色,表示當(dāng)前處于通電工作狀態(tài)
電源電壓:直流DC5V(切忌不要將高于5V的電源插入HDfury Pro電源孔)
產(chǎn)品附件:HDfury Pro主機一臺、電源適配器一個、說明書一份、YPBPR線一條、音頻線一條
FAQ:
1:HDfury Pro是個什么產(chǎn)品?
——HDfury Pro是一款為只有VGA或者YPBPR接口的顯示設(shè)備,橋接HDMI設(shè)備的高清視頻轉(zhuǎn)換器。HDMI通過HDfury Pro以后,轉(zhuǎn)換成VGA或者YPBPR的高清晰信號,通過顯示設(shè)備的接口重現(xiàn)影像。
2:HDfury Pro的顯示效果和市場是的VGA-BOX有什么區(qū)別?哪個更好?
Q:HDfury Pro是專門針對***用戶或者發(fā)燒級用戶而設(shè)計開發(fā)的產(chǎn)品,只局限于高清影音系統(tǒng)里,因此,HDfury Pro追求的是卓越的顯示效果,追求的是高清的享受,而不是和普通VGA-BOX那樣追求價格,不注重高清的本質(zhì),那個更好,不用說了。
3:HDfury Pro和市場上的HDMI轉(zhuǎn)VGA/YPBPR的線材有什么區(qū)別?
Q:市場上有不少HDMI轉(zhuǎn)VGA的線材,或者轉(zhuǎn)YPBPR的線材,且里面帶有芯片處理,但是,是不是帶有芯片就一定是好東西呢?NO。HDfury Pro采用的是國際***大型芯片設(shè)計公司設(shè)計的***的HDMI芯片,而不是山寨電視機里面用的低端低成本的HDMI***芯片。HDfury Pro里面的YPBPR輸出芯片,采用世界最為***的三電平同步處理技術(shù),這是這些轉(zhuǎn)換線材或者同類產(chǎn)品無法做到的(該芯片價格極高,這讓很多把利益放在***位的商家望而止步)。
4:HDfury Pro和市場上價格昂貴的HDfury2有什么區(qū)別,為什么HDfury2價格這么高?
Q:HDfury Pro和HDfury2相比,輸入端多一路HDMI接口,因為現(xiàn)在有多臺HDMI設(shè)備的人比比皆是;輸出端采用的處理方式不一樣,HDfury Pro采用分離的處理集成電路,HDfury2采用一顆芯片完成VGA和YPBPR輸出功能(這個可以這樣解釋:HDMI傳輸為什么要用差分19針座子傳送,而YPBPR為什么只用Y/PB/PR三條線傳輸?因為高清的信號頻率極高,如果把信號放在一起,容易產(chǎn)生相互輻***擾,影響畫質(zhì);同樣,在VGA和YPBPR輸出中,傳輸?shù)亩际荋DMI輸入進(jìn)來的高速高頻率的信號,如果放在一起,肯定要產(chǎn)生不必要的串?dāng)_,縱然是增加成本,如果是發(fā)燒產(chǎn)品,或者***產(chǎn)品,一定是要分開;如果單從產(chǎn)品成本的角度考慮,肯定用一顆芯片更經(jīng)濟(jì),利潤更大)。價格方面,兩個原因:***、HDfury Pro之所以那么便宜,是因為設(shè)計師不是一個單純的商人,更希望有更多的人能用上HDfury Pro;第二、HDfury2因為采用很老的芯片,目前已經(jīng)停產(chǎn)多年,原廠不再供貨,只能通過市場上購買積壓貨或者舊貨,物以稀為貴,當(dāng)然成本自然增加,所以售價很高。
5:HDfury Pro為什么需要外接電源?而HDfury2則可以不用電源?
Q:HDfury Pro采用的是真正的高清視頻信號處理芯片,既然是高清晰的信號,運行起來肯定需要好散功率,為什么電腦CPU會發(fā)熱嚴(yán)重,為什么微軟的XBOX360會屢次三紅,就是因為他里面芯片內(nèi)核工作頻率高,運行速度快,同樣,1080P的數(shù)字高清信號在芯片里面運行,不發(fā)熱或者不耗電,那才真是稀奇的事情呢?除非........這就是一個***產(chǎn)品和一個普通產(chǎn)品之間的差距。
6:HDfury Pro的HDCP采用什么樣的存放方式?
HDfury Pro的HDCP采用芯片內(nèi)置的方式,確保一顆芯片一個HDCP編碼,因為內(nèi)置,就讓那些逃避叫HDCP專利費的人翻版盜用,同時,因為一對一的編碼,不會造成因為HDCP盜版而無法讓HDMI內(nèi)部的高清晰影音畫質(zhì)受到影響。
7:什么叫三電平同步
簡單的解釋:可以兼容不同設(shè)備的YPBPR接口,三電平同步讓HDfuru Pro兼容性獨領(lǐng)***。
詳細(xì)解釋請參考下面:
The advent of HDTV has brought a number of new concepts and technologies with it. One of the concepts put into practice is tri-level sync. Tri-level sync solves some traditional problems found with bi-level sync. Although tri-level sync is preferable with the new television system, we still find ourselves interfacing to systems capable of handling only bi-level sync. Therefore, the need exists to convert from tri-level to bi-level sync on occasion. This Tech Corner will acquaint the reader with the new tri-level sync format and its relati***hip to bi-level sync.
Bi-Level Sync
Bi-level sync has been the standard synchronization signaling method for all forms of video including computer video, composite video, S-video, and component video. Bi-level refers to two levels. For sync, this means a pulse h***ing two voltage levels (a high and low level, relatively speaking), hence the name. Systems using bi-level sync are edge triggered. Typically, the negative-going, leading edge of the pulse triggers the synchronization process (Figure 1). Display systems must "look" for this negative going edge in order to identify the moment in time when to re-sync the raster scan process. Most will recall that computer graphic ca*** sometimes output positive-going sync. Positive-going sync signal the display that the graphics line rate has changed to a new format.
Looking for the sync pulse has always been one of the "trickiest" of tasks for the display signal processor. It requires careful biasing of the sync processing circuitry so that the sync pulse is made as distinguishable as possible from the other voltage levels within the video signal. As part of the video signal, bi-level sync introduces an unwanted DC component (Figure 2). In processing of composite, S-video, or component video the DC component is not too troublesome and can easily be managed as part of the normal sync separation routine. When bi-level sync is introduced onto RGB video channels, the process is more complex. In some systems, sync is introduced on the green channel only. This requires that the sync separation process be ultra clean; in most cases, however, it is not. Usually a very narrow sync pulse remains.
Residual sync results from incomplete removal of the sync information from a video processing channel. Sync is typically imposed on the green channel in RGsB systems. High definition component video signals contain sync on each channel. Depending on the performance characteristics of the DC restoration circuitry within the video processing channel, some or all of the sync pulse may not be removed from the green channel. Residual sync causes the green channel to bias incorrectly with respect to red and blue at the display CRT, thus causing a color shift. Even in RGB systems where sync is introduced on all three channels, there is some difficulty with maintaining c***istent processing between the three channels. Again, ***all DC shifts in the black level caused by residual sync can disturb the color balance or gains of the video channels.
A significant amount of power is used by the broadcast tran***itter to send the sync pulse. Polarity of the video signal is designed to minimize the amount of power used to tran***it sync. And, while we h***e not tran***itted analog versi*** of high definition television terrestrially, early testing done during HDTV development dem***trated a need to improve the management of synchronization in the new television system. Tri-level sync eliminates the DC component and provides a more robust way to identify the coming of synchronization in the signal chain.
Tri-Level Sync
Tri-level sync was introduced with the ***PTE 240 analog HDTV standard. Previous to that, the early HDTV 1125/60 systems used various synchronization w***eforms, as provided by various 1125/60 equipment manufacturers. The creators of the later ***PTE 240 HDTV standard searched for a standard sync w***eform that would ensure system compatibility. The goal was to provide more precise synchronization and relative timing of the three component video signals. HDTV component video has sync present on all three channels: Y, Pb, and Pr. In addition, the sync structure needs to be resilient enough to endure multigenerational recording and other noisy situati***. Tri-level sync met the requirements.
Figure 3shows a graphic representation of a tri-level sync signal. As defined by the ***PTE 240 standard, the pulse will start at the zero volts (specified black level) and first transiti*** negative, to -300 mV (+/- 6 mV). After a specified period, it transiti*** positive + 300 mV (+/- 6 mV), holds for a specified period and then returns to zero or black level. The display system "looks" for the zero crossing of the sync pulse. Each half of the tri-level sync pulse is defined to be 44 samples (reference clock periods) wide, for a total sync pulse width of 88 samples. The rise time is defined to be four samples wide +/- 1.5 samples.
This symmetry of design results in a net DC value of zero volts. This is one major advantage of tri-level sync. This solves the problem of a bi-level signal introducing a DC component into the video signal. The elimination of DC offset makes signal processing easier. Within our new digital television system, the unique excursi*** of the sync derive numerical values that are easily coded and easily recognized within the digital tran***ission channel.